python import cv2 import numpy as np import tensorflow as tf # 加載模型 model = tf.keras.models.load_model("yolov3.h5") # 定義類(lèi)別名稱 class_names = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] # 讀取圖像 image = cv2.imread("test.jpg") # 調(diào)整圖像大小 image = cv2.resize(image, (416, 416)) # 將圖像轉(zhuǎn)換為張量 image = tf.convert_to_tensor(image, dtype=tf.float32) image = tf.expand_dims(image, 0) # 進(jìn)行目標(biāo)檢測(cè) outputs = model(image) # 處理輸出結(jié)果 boxes, scores, classes, nums = outputs # 繪制檢測(cè)結(jié)果 for i in range(nums[0]): box = boxes[0][i] score = scores[0][i] cls = classes[0][i] label = class_names[int(cls)] if score > 0.5: x1, y1, x2, y2 = box.numpy() x1 = int(x1 * image.shape[2]) y1 = int(y1 * image.shape[1]) x2 = int(x2 * image.shape[2]) y2 = int(y2 * image.shape[1]) cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # 顯示檢測(cè)結(jié)果 cv2.imshow("image", image.numpy()[0]) cv2.waitKey(0) cv2.destroyAllWindows()在上面的代碼中,我們首先加載了預(yù)訓(xùn)練模型,然后定義了類(lèi)別名稱。接下來(lái),我們讀取了一張測(cè)試圖像,并將其調(diào)整為模型的輸入大小。然后,我們將圖像轉(zhuǎn)換為張量,并將其輸入到模型中進(jìn)行目標(biāo)檢測(cè)。最后,我們處理模型的輸出結(jié)果,并將檢測(cè)結(jié)果繪制在原始圖像上。 這就是使用 Python 和 TensorFlow 實(shí)現(xiàn) YOLOv3 目標(biāo)檢測(cè)算法的基本步驟。當(dāng)然,我們還可以對(duì)模型進(jìn)行微調(diào),以提高檢測(cè)精度和速度??傊琘OLOv3 是一種非常強(qiáng)大的目標(biāo)檢測(cè)算法,它可以在許多實(shí)際應(yīng)用中發(fā)揮重要作用。
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://www.ezyhdfw.cn/yun/130969.html
閱讀 3405·2023-04-26 02:40
閱讀 4728·2021-09-22 15:22
閱讀 1733·2021-09-22 10:02
閱讀 3602·2021-08-11 10:23
閱讀 1446·2019-08-30 15:55
閱讀 2543·2019-08-30 12:48
閱讀 674·2019-08-30 11:04
閱讀 765·2019-08-29 16:29