亚洲中字慕日产2020,大陆极品少妇内射AAAAAA,无码av大香线蕉伊人久久,久久精品国产亚洲av麻豆网站

資訊專欄INFORMATION COLUMN

深入理解Java內(nèi)存模型(一)——基礎(chǔ)

jsdt / 609人閱讀

摘要:線程之間的通信由內(nèi)存模型本文簡稱為控制,決定一個線程對共享變量的寫入何時對另一個線程可見。為了保證內(nèi)存可見性,編譯器在生成指令序列的適當(dāng)位置會插入內(nèi)存屏障指令來禁止特定類型的處理器重排序。

并發(fā)編程模型的分類

在并發(fā)編程中,我們需要處理兩個關(guān)鍵問題:線程之間如何通信及線程之間如何同步(這里的線程是指并發(fā)執(zhí)行的活動實體)。通信是指線程之間以何種機制來交換信息。在命令式編程中,線程之間的通信機制有兩種:共享內(nèi)存和消息傳遞。

在共享內(nèi)存的并發(fā)模型里,線程之間共享程序的公共狀態(tài),線程之間通過寫-讀內(nèi)存中的公共狀態(tài)來隱式進行通信。在消息傳遞的并發(fā)模型里,線程之間沒有公共狀態(tài),線程之間必須通過明確的發(fā)送消息來顯式進行通信。

同步是指程序用于控制不同線程之間操作發(fā)生相對順序的機制。在共享內(nèi)存并發(fā)模型里,同步是顯式進行的。程序員必須顯式指定某個方法或某段代碼需要在線程之間互斥執(zhí)行。在消息傳遞的并發(fā)模型里,由于消息的發(fā)送必須在消息的接收之前,因此同步是隱式進行的。

Java的并發(fā)采用的是共享內(nèi)存模型,Java線程之間的通信總是隱式進行,整個通信過程對程序員完全透明。如果編寫多線程程序的Java程序員不理解隱式進行的線程之間通信的工作機制,很可能會遇到各種奇怪的內(nèi)存可見性問題。

Java內(nèi)存模型的抽象

在java中,所有實例域、靜態(tài)域和數(shù)組元素存儲在堆內(nèi)存中,堆內(nèi)存在線程之間共享(本文使用“共享變量”這個術(shù)語代指實例域,靜態(tài)域和數(shù)組元素)。局部變量(Local variables),方法定義參數(shù)(java語言規(guī)范稱之為formal method parameters)和異常處理器參數(shù)(exception handler parameters)不會在線程之間共享,它們不會有內(nèi)存可見性問題,也不受內(nèi)存模型的影響。

Java線程之間的通信由Java內(nèi)存模型(本文簡稱為JMM)控制,JMM決定一個線程對共享變量的寫入何時對另一個線程可見。從抽象的角度來看,JMM定義了線程和主內(nèi)存之間的抽象關(guān)系:線程之間的共享變量存儲在主內(nèi)存(main memory)中,每個線程都有一個私有的本地內(nèi)存(local memory),本地內(nèi)存中存儲了該線程以讀/寫共享變量的副本。本地內(nèi)存是JMM的一個抽象概念,并不真實存在。它涵蓋了緩存,寫緩沖區(qū),寄存器以及其他的硬件和編譯器優(yōu)化。Java內(nèi)存模型的抽象示意圖如下:

從上圖來看,線程A與線程B之間如要通信的話,必須要經(jīng)歷下面2個步驟:

首先,線程A把本地內(nèi)存A中更新過的共享變量刷新到主內(nèi)存中去。

然后,線程B到主內(nèi)存中去讀取線程A之前已更新過的共享變量。

下面通過示意圖來說明這兩個步驟:

如上圖所示,本地內(nèi)存A和B有主內(nèi)存中共享變量x的副本。假設(shè)初始時,這三個內(nèi)存中的x值都為0。線程A在執(zhí)行時,把更新后的x值(假設(shè)值為1)臨時存放在自己的本地內(nèi)存A中。當(dāng)線程A和線程B需要通信時,線程A首先會把自己本地內(nèi)存中修改后的x值刷新到主內(nèi)存中,此時主內(nèi)存中的x值變?yōu)榱?。隨后,線程B到主內(nèi)存中去讀取線程A更新后的x值,此時線程B的本地內(nèi)存的x值也變?yōu)榱?。

從整體來看,這兩個步驟實質(zhì)上是線程A在向線程B發(fā)送消息,而且這個通信過程必須要經(jīng)過主內(nèi)存。JMM通過控制主內(nèi)存與每個線程的本地內(nèi)存之間的交互,來為java程序員提供內(nèi)存可見性保證。

重排序

在執(zhí)行程序時為了提高性能,編譯器和處理器常常會對指令做重排序。重排序分三種類型:

編譯器優(yōu)化的重排序。編譯器在不改變單線程程序語義的前提下,可以重新安排語句的執(zhí)行順序。

指令級并行的重排序?,F(xiàn)代處理器采用了指令級并行技術(shù)(Instruction-Level Parallelism, ILP)來將多條指令重疊執(zhí)行。如果不存在數(shù)據(jù)依賴性,處理器可以改變語句對應(yīng)機器指令的執(zhí)行順序。

內(nèi)存系統(tǒng)的重排序。由于處理器使用緩存和讀/寫緩沖區(qū),這使得加載和存儲操作看上去可能是在亂序執(zhí)行。

從java源代碼到最終實際執(zhí)行的指令序列,會分別經(jīng)歷下面三種重排序:

上述的1屬于編譯器重排序,2和3屬于處理器重排序。這些重排序都可能會導(dǎo)致多線程程序出現(xiàn)內(nèi)存可見性問題。對于編譯器,JMM的編譯器重排序規(guī)則會禁止特定類型的編譯器重排序(不是所有的編譯器重排序都要禁止)。對于處理器重排序,JMM的處理器重排序規(guī)則會要求java編譯器在生成指令序列時,插入特定類型的內(nèi)存屏障(memory barriers,intel稱之為memory fence)指令,通過內(nèi)存屏障指令來禁止特定類型的處理器重排序(不是所有的處理器重排序都要禁止)。

JMM屬于語言級的內(nèi)存模型,它確保在不同的編譯器和不同的處理器平臺之上,通過禁止特定類型的編譯器重排序和處理器重排序,為程序員提供一致的內(nèi)存可見性保證。

處理器重排序與內(nèi)存屏障指令

現(xiàn)代的處理器使用寫緩沖區(qū)來臨時保存向內(nèi)存寫入的數(shù)據(jù)。寫緩沖區(qū)可以保證指令流水線持續(xù)運行,它可以避免由于處理器停頓下來等待向內(nèi)存寫入數(shù)據(jù)而產(chǎn)生的延遲。同時,通過以批處理的方式刷新寫緩沖區(qū),以及合并寫緩沖區(qū)中對同一內(nèi)存地址的多次寫,可以減少對內(nèi)存總線的占用。雖然寫緩沖區(qū)有這么多好處,但每個處理器上的寫緩沖區(qū),僅僅對它所在的處理器可見。這個特性會對內(nèi)存操作的執(zhí)行順序產(chǎn)生重要的影響:處理器對內(nèi)存的讀/寫操作的執(zhí)行順序,不一定與內(nèi)存實際發(fā)生的讀/寫操作順序一致!為了具體說明,請看下面示例:

Processor A

Processor B

a = 1; //A1
x = b; //A2

b = 2; //B1
y = a; //B2

初始狀態(tài):a = b = 0
處理器允許執(zhí)行后得到結(jié)果:x = y = 0

假設(shè)處理器A和處理器B按程序的順序并行執(zhí)行內(nèi)存訪問,最終卻可能得到x = y = 0的結(jié)果。具體的原因如下圖所示:

這里處理器A和處理器B可以同時把共享變量寫入自己的寫緩沖區(qū)(A1,B1),然后從內(nèi)存中讀取另一個共享變量(A2,B2),最后才把自己寫緩存區(qū)中保存的臟數(shù)據(jù)刷新到內(nèi)存中(A3,B3)。當(dāng)以這種時序執(zhí)行時,程序就可以得到x = y = 0的結(jié)果。

從內(nèi)存操作實際發(fā)生的順序來看,直到處理器A執(zhí)行A3來刷新自己的寫緩存區(qū),寫操作A1才算真正執(zhí)行了。雖然處理器A執(zhí)行內(nèi)存操作的順序為:A1->A2,但內(nèi)存操作實際發(fā)生的順序卻是:A2->A1。此時,處理器A的內(nèi)存操作順序被重排序了(處理器B的情況和處理器A一樣,這里就不贅述了)。

這里的關(guān)鍵是,由于寫緩沖區(qū)僅對自己的處理器可見,它會導(dǎo)致處理器執(zhí)行內(nèi)存操作的順序可能會與內(nèi)存實際的操作執(zhí)行順序不一致。由于現(xiàn)代的處理器都會使用寫緩沖區(qū),因此現(xiàn)代的處理器都會允許對寫-讀操作重排序。

下面是常見處理器允許的重排序類型的列表:

Load-Load Load-Store Store-Store Store-Load 數(shù)據(jù)依賴
sparc-TSO N N N Y N
x86 N N N Y N
ia64 Y Y Y Y N
PowerPC Y Y Y Y N

上表單元格中的“N”表示處理器不允許兩個操作重排序,“Y”表示允許重排序。

從上表我們可以看出:常見的處理器都允許Store-Load重排序;常見的處理器都不允許對存在數(shù)據(jù)依賴的操作做重排序。sparc-TSO和x86擁有相對較強的處理器內(nèi)存模型,它們僅允許對寫-讀操作做重排序(因為它們都使用了寫緩沖區(qū))。

※注1:sparc-TSO是指以TSO(Total Store Order)內(nèi)存模型運行時,sparc處理器的特性。
※注2:上表中的x86包括x64及AMD64。
※注3:由于ARM處理器的內(nèi)存模型與PowerPC處理器的內(nèi)存模型非常類似,本文將忽略它。
※注4:數(shù)據(jù)依賴性后文會專門說明。

為了保證內(nèi)存可見性,java編譯器在生成指令序列的適當(dāng)位置會插入內(nèi)存屏障指令來禁止特定類型的處理器重排序。JMM把內(nèi)存屏障指令分為下列四類:

屏障類型 指令示例 說明

| LoadLoad Barriers | Load1; LoadLoad; Load2 |確保Load1數(shù)據(jù)的裝載,之前于Load2及所有后續(xù)裝載指令的裝載。|
| StoreStore Barriers | Store1; StoreStore; Store2 |確保Store1數(shù)據(jù)對其他處理器可見(刷新到內(nèi)存),之前于Store2及所有后續(xù)存儲指令的存儲。|
| LoadStore Barriers | Load1; LoadStore; Store2 |確保Load1數(shù)據(jù)裝載,之前于Store2及所有后續(xù)的存儲指令刷新到內(nèi)存。|
| StoreLoad Barriers | Store1; StoreLoad; Load2 |確保Store1數(shù)據(jù)對其他處理器變得可見(指刷新到內(nèi)存),之前于Load2及所有后續(xù)裝載指令的裝載。StoreLoad Barriers會使該屏障之前的所有內(nèi)存訪問指令(存儲和裝載指令)完成之后,才執(zhí)行該屏障之后的內(nèi)存訪問指令。|

StoreLoad Barriers是一個“全能型”的屏障,它同時具有其他三個屏障的效果?,F(xiàn)代的多處理器大都支持該屏障(其他類型的屏障不一定被所有處理器支持)。執(zhí)行該屏障開銷會很昂貴,因為當(dāng)前處理器通常要把寫緩沖區(qū)中的數(shù)據(jù)全部刷新到內(nèi)存中(buffer fully flush)。

happens-before

從JDK5開始,java使用新的JSR -133內(nèi)存模型(本文除非特別說明,針對的都是JSR- 133內(nèi)存模型)。JSR-133使用happens-before的概念來闡述操作之間的內(nèi)存可見性。在JMM中,如果一個操作執(zhí)行的結(jié)果需要對另一個操作可見,那么這兩個操作之間必須要存在happens-before關(guān)系。這里提到的兩個操作既可以是在一個線程之內(nèi),也可以是在不同線程之間。

與程序員密切相關(guān)的happens-before規(guī)則如下:

程序順序規(guī)則:一個線程中的每個操作,happens- before 于該線程中的任意后續(xù)操作。

監(jiān)視器鎖規(guī)則:對一個監(jiān)視器鎖的解鎖,happens- before 于隨后對這個監(jiān)視器鎖的加鎖。

volatile變量規(guī)則:對一個volatile域的寫,happens- before 于任意后續(xù)對這個volatile域的讀。

傳遞性:如果A happens- before B,且B happens- before C,那么A happens- before C。

注意,兩個操作之間具有happens-before關(guān)系,并不意味著前一個操作必須要在后一個操作之前執(zhí)行!happens-before僅僅要求前一個操作(執(zhí)行的結(jié)果)對后一個操作可見,且前一個操作按順序排在第二個操作之前(the first is visible to and ordered before the second)。happens- before的定義很微妙,后文會具體說明happens-before為什么要這么定義。

happens-before與JMM的關(guān)系如下圖所示:

如上圖所示,一個happens-before規(guī)則通常對應(yīng)于多個編譯器和處理器重排序規(guī)則。對于java程序員來說,happens-before規(guī)則簡單易懂,它避免java程序員為了理解JMM提供的內(nèi)存可見性保證而去學(xué)習(xí)復(fù)雜的重排序規(guī)則以及這些規(guī)則的具體實現(xiàn)。

參考文獻

Programming Language Pragmatics, Third Edition

The Java Language Specification, Third Edition

JSR-133: Java Memory Model and Thread Specification

Java theory and practice: Fixing the Java Memory Model, Part 2

Understanding POWER Multiprocessors

Concurrent Programming on Windows

The Art of Multiprocessor Programming

Intel? 64 and IA-32 ArchitecturesvSoftware Developer’s Manual Volume 3A: System Programming Guide, Part 1

The JSR-133 Cookbook for Compiler Writers

關(guān)于作者

程曉明,Java軟件工程師,系統(tǒng)分析師、信息項目管理師。專注于并發(fā)編程。個人郵箱:asst2003@163.com。

請看下篇 深入理解Java內(nèi)存模型(二)——重排序

via ifeve

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://www.ezyhdfw.cn/yun/64067.html

相關(guān)文章

  • 深入理解Java內(nèi)存模型(七)——總結(jié)

    摘要:編譯器,和處理器會共同確保單線程程序的執(zhí)行結(jié)果與該程序在順序一致性模型中的執(zhí)行結(jié)果相同。正確同步的多線程程序的執(zhí)行將具有順序一致性程序的執(zhí)行結(jié)果與該程序在順序一致性內(nèi)存模型中的執(zhí)行結(jié)果相同。 前情提要 深入理解Java內(nèi)存模型(六)——final 處理器內(nèi)存模型 順序一致性內(nèi)存模型是一個理論參考模型,JMM和處理器內(nèi)存模型在設(shè)計時通常會把順序一致性內(nèi)存模型作為參照。JMM和處理器內(nèi)...

    paney129 評論0 收藏0
  • 我的阿里之路+Java面經(jīng)考點

    摘要:我的是忙碌的一年,從年初備戰(zhàn)實習(xí)春招,年三十都在死磕源碼,三月份經(jīng)歷了阿里五次面試,四月順利收到實習(xí)。因為我心理很清楚,我的目標是阿里。所以在收到阿里之后的那晚,我重新規(guī)劃了接下來的學(xué)習(xí)計劃,將我的短期目標更新成拿下阿里轉(zhuǎn)正。 我的2017是忙碌的一年,從年初備戰(zhàn)實習(xí)春招,年三十都在死磕JDK源碼,三月份經(jīng)歷了阿里五次面試,四月順利收到實習(xí)offer。然后五月懷著忐忑的心情開始了螞蟻金...

    姘擱『 評論0 收藏0
  • 深入理解Java內(nèi)存模型(二)——重排序

    摘要:前情提要深入理解內(nèi)存模型一基礎(chǔ)編譯器運行時會對指令進行重排序。以處理器的猜測執(zhí)行為例,執(zhí)行線程的處理器可以提前讀取并計算,然后把計算結(jié)果臨時保存到一個名為重排序緩沖的硬件緩存中。請看下篇深入理解內(nèi)存模型三順序一致性 前情提要 深入理解Java內(nèi)存模型(一)——基礎(chǔ) Java編譯器、運行時會對指令進行重排序。這種重排序在單線程和多線程情況下分別有什么影響呢? 數(shù)據(jù)依賴性 如果兩個操...

    tunny 評論0 收藏0
  • 深入理解虛擬機之虛擬機類加載機制

    摘要:最終形成可以被虛擬機最直接使用的類型的過程就是虛擬機的類加載機制。即重寫一個類加載器的方法驗證驗證是連接階段的第一步,這一階段的目的是為了確保文件的字節(jié)流中包含的信息符合當(dāng)前虛擬機的要求,并且不會危害虛擬機自身的安全。 《深入理解Java虛擬機:JVM高級特性與最佳實踐(第二版》讀書筆記與常見相關(guān)面試題總結(jié) 本節(jié)常見面試題(推薦帶著問題閱讀,問題答案在文中都有提到): 簡單說說類加載過...

    MadPecker 評論0 收藏0
  • jvm原理

    摘要:在之前,它是一個備受爭議的關(guān)鍵字,因為在程序中使用它往往收集器理解和原理分析簡稱,是后提供的面向大內(nèi)存區(qū)數(shù)到數(shù)多核系統(tǒng)的收集器,能夠?qū)崿F(xiàn)軟停頓目標收集并且具有高吞吐量具有更可預(yù)測的停頓時間。 35 個 Java 代碼性能優(yōu)化總結(jié) 優(yōu)化代碼可以減小代碼的體積,提高代碼運行的效率。 從 JVM 內(nèi)存模型談線程安全 小白哥帶你打通任督二脈 Java使用讀寫鎖替代同步鎖 應(yīng)用情景 前一陣有個做...

    lufficc 評論0 收藏0

發(fā)表評論

0條評論

最新活動
閱讀需要支付1元查看
<