亚洲中字慕日产2020,大陆极品少妇内射AAAAAA,无码av大香线蕉伊人久久,久久精品国产亚洲av麻豆网站

資訊專欄INFORMATION COLUMN

五種最大公約數(shù)Python求解總結(jié)

89542767 / 818人閱讀


  小編寫這篇文章的主要目的,主要是給大家講解一下,關(guān)于最大公約數(shù)的求解方法,下面小編集中給大家總結(jié)一下,具體操作的五種方法。


  方法一:短除法


  短除法是求最大公因數(shù)的一種方法,也可用來求最小公倍數(shù)。求幾個(gè)數(shù)最大公因數(shù)的方法,開始時(shí)用觀察比較的方法,即:先把每個(gè)數(shù)的因數(shù)找出來,然后再找出公因數(shù),最后在公因數(shù)中找出最大公因數(shù)。后來,使用分解質(zhì)因數(shù)法來分別分解兩個(gè)數(shù)的因數(shù),再進(jìn)行運(yùn)算。之后又演變?yōu)槎坛?。短除法運(yùn)算方法是先用一個(gè)除數(shù)除以能被它除盡的一個(gè)質(zhì)數(shù),以此類推,除到兩個(gè)數(shù)的商是互質(zhì)數(shù)為止。


  簡單來說就是逐步找出兩個(gè)數(shù)的所有公約數(shù),再將這些公約數(shù)累乘起來,就能得到最大公約數(shù)啦!


  a=int(input("please input the first number:"))
  b=int(input("please input the second number:"))
  m,n=a,b#創(chuàng)建兩個(gè)變量存儲(chǔ)a和b
  t=1#創(chuàng)建t作為最大公約數(shù)的載體
  for i in range(2,min(a,b)):
  while(a%i==0 and b%i==0):
  t*=i#所有公約數(shù)累乘起來
  a/=i
  b/=i
  print((f"{m},{n}的最大公約數(shù)為:{t}"))


  這種方法雖然有點(diǎn)麻煩,但是邏輯卻很清楚,不容易出錯(cuò)。


  方法二:歐幾里得算法(輾轉(zhuǎn)相除法)


  歐幾里得算法是用來求兩個(gè)正整數(shù)最大公約數(shù)的算法。古希臘數(shù)學(xué)家歐幾里得在其著作《The Elements》中最早描述了這種算法,所以被命名為歐幾里得算法。


  假如需要求1997和615兩個(gè)正整數(shù)的最大公約數(shù),用歐幾里得算法,是這樣進(jìn)行的:


  1997/615=3······152


  615/152=4······7


  152/7=21······5


  7/5=1······2


  5/2=2······1


  2/1=2······0


  至此,最大公約數(shù)為1


  以除數(shù)和余數(shù)反復(fù)做除法運(yùn)算,當(dāng)余數(shù)為0時(shí),取當(dāng)前算式除數(shù)為最大公約數(shù),所以就得出了1997和615的最大公約數(shù)1。


  明白了這其中的邏輯,我們就可以著手開始寫程序啦!


  a=int(input("please input the first number:"))
  b=int(input("please input the second number:"))
  #首先要給兩數(shù)排序,保證大數(shù)除以小數(shù)
  m=max(a,b)
  n=min(a,b)
  t=m%n
  while t!=0:
  m,n=n,t#仔細(xì)觀察不難發(fā)現(xiàn):每個(gè)除式的m、n是都是上一個(gè)式子的n和余數(shù)
  t=m%n#更新余數(shù)
  print(f"{a}和的最大公約數(shù)為{n}")


  當(dāng)然了,遞歸方法也能實(shí)現(xiàn)歐幾里得算法。


   def GCD(a,b):
  #比較大小,保證大數(shù)除以小數(shù)
  if a<b:
  a,b=b,a
  #判斷是否能整除,若能整除,直接返回被除數(shù)
  if a%b==0:
  return b
  #若不能整除,則返回函數(shù)GCD,參數(shù)做相應(yīng)變化
  else:
  return GCD(b,a%b)
  a=int(input("please input the first number:"))
  b=int(input("please input the second number:"))
  gcd=GCD(a,b)
  print(f"{a}和的最大公約數(shù)為{gcd}")


  方法三:更相減損術(shù)


  更相減損術(shù)是出自《九章算術(shù)》的一種求最大公約數(shù)的算法,它原本是為約分而設(shè)計(jì)的,但它適用于任何需要求最大公約數(shù)的場(chǎng)合。原文是:


  可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也。以等數(shù)約之。


  白話文譯文:


  (如果需要對(duì)分?jǐn)?shù)進(jìn)行約分,那么)可以折半的話,就折半(也就是用2來約分)。如果不可以折半的話,那么就比較分母和分子的大小,用大數(shù)減去小數(shù),互相減來減去,一直到減數(shù)與差相等為止,用這個(gè)相等的數(shù)字來約分。


  具體步驟:


  第一步:任意給定兩個(gè)正整數(shù);判斷它們是否都是偶數(shù)。若是,則用2約簡;若不是則執(zhí)行第二步。


  第二步:以較大的數(shù)減較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的減數(shù)和差相等為止。


  則第一步中約掉的若干個(gè)2的積與第二步中等數(shù)的乘積就是所求的最大公約數(shù)。


  其中所說的“等數(shù)”,就是公約數(shù)。求“等數(shù)”的辦法是“更相減損”法。


  現(xiàn)在使用更相減損術(shù)求98與63的最大公約數(shù)。


  解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減:


  98-63=35


  63-35=28


  35-28=7


  28-7=21


  21-7=14


  14-7=7


  所以,98和63的最大公約數(shù)等于7。


  a=int(input("please input the first number:"))
  b=int(input("please input the second number:"))
  #首先要給兩數(shù)排序,保證大數(shù)減小數(shù)
  m=max(a,b)
  n=min(a,b)
  #判斷兩數(shù)是否都是偶數(shù),如果都是偶數(shù)就同時(shí)除2
  while m%2==0 and n%2==0:
  m,n=m/2,n/2
  t=m-n
  #判斷條件是減數(shù)和差相等
  while n!=t:
  m,n=max(n,t),min(n,t)#每減一輪之后,都要重新判斷減數(shù)和差的大小,再次以大數(shù)減去小數(shù)
  t=m-n
  print(f"{a}和的最大公約數(shù)為{n}")


  方法四:窮舉法(枚舉法)


  從兩個(gè)數(shù)中較小數(shù)開始,由小到大列舉,找出公約數(shù)并保證該公約數(shù)也屬于較大數(shù),這些公約數(shù)的最大者就是最大公約數(shù);也可以從大到小列舉,直到找出公約數(shù)后跳出循環(huán),該公約數(shù)即是最大公約數(shù)。


  a=int(input("please input the first number:"))
  b=int(input("please input the second number:"))
  p,q=min(a,b),max(a,b)
  lst=[]
  for i in range(1,p+1):
  if p%i==0 and q%i==0:
  lst.append(i)
  gcd=max(lst)
  print(f"{a}和的最大公約數(shù)為{gcd}")
  #a=int(input("please input the first number:"))
  #b=int(input("please input the second number:"))
  #p,q=min(a,b),max(a,b)
  #gcd=0
  #for i in range(p,0,-1):
  #if p%i==0 and q%i==0:
  #gcd=i
  #break
  #print(f"{a}和的最大公約數(shù)為{gcd}")

  方法五:Stein算法


  Stein算法是一種計(jì)算兩個(gè)數(shù)最大公約數(shù)的算法,是針對(duì)歐幾里德算法在對(duì)大整數(shù)進(jìn)行運(yùn)算時(shí),需要試商導(dǎo)致增加運(yùn)算時(shí)間的缺陷而提出的改進(jìn)算法。


  歐幾里得算法缺陷:


  歐幾里德算法是計(jì)算兩個(gè)數(shù)最大公約數(shù)的傳統(tǒng)算法,無論從理論還是從實(shí)際效率上都是很好的。但是卻有一個(gè)致命的缺陷,這個(gè)缺陷在素?cái)?shù)比較小的時(shí)候一般是感覺不到的,只有在大素?cái)?shù)時(shí)才會(huì)顯現(xiàn)出來。


  一般實(shí)際應(yīng)用中的整數(shù)很少會(huì)超過64位(當(dāng)然已經(jīng)允許128位了),對(duì)于這樣的整數(shù),計(jì)算兩個(gè)數(shù)之間的模是很簡單的。對(duì)于字長為32位的平臺(tái),計(jì)算兩個(gè)不超過32位的整數(shù)的模,只需要一個(gè)指令周期,而計(jì)算64位以下的整數(shù)模,也不過幾個(gè)周期而已。但是對(duì)于更大的素?cái)?shù),這樣的計(jì)算過程就不得不由用戶來設(shè)計(jì),為了計(jì)算兩個(gè)超過64位的整數(shù)的模,用戶也許不得不采用類似于多位數(shù)除法手算過程中的試商法,這個(gè)過程不但復(fù)雜,而且消耗了很多CPU時(shí)間。對(duì)于現(xiàn)代密碼算法,要求計(jì)算128位以上的素?cái)?shù)的情況比比皆是,設(shè)計(jì)這樣的程序迫切希望能夠拋棄除法和取模。


  看下面兩個(gè)結(jié)論:


  gcd(a,a)=a,也就是一個(gè)數(shù)和其自身的公約數(shù)仍是其自身。


  gcd(ka,kb)=k gcd(a,b),也就是最大公約數(shù)運(yùn)算和倍乘運(yùn)算可以交換。特殊地,當(dāng)k=2時(shí),說明兩個(gè)偶數(shù)的最大公約數(shù)必然能被2整除。


  當(dāng)k與b互為質(zhì)數(shù),gcd(ka,b)=gcd(a,b),也就是約掉兩個(gè)數(shù)中只有其中一個(gè)含有的因子不影響最大公約數(shù)。特殊地,當(dāng)k=2時(shí),說明計(jì)算一個(gè)偶數(shù)和一個(gè)奇數(shù)的最大公約數(shù)時(shí),可以先將偶數(shù)除以2。


  :param a:第一個(gè)數(shù)


  :param b:第二個(gè)數(shù)


  :return:最大公約數(shù)


  def gcd_Stein(a,b):
  #保證b比a小
  if a<b:
  a,b=b,a
  if(0==b):
  return a
  #a、b都是偶數(shù),除2右移一位即可
  if a%2==0 and b%2==0:
  return 2*gcd_Stein(a/2,b/2)
  #a是偶數(shù)
  if a%2==0:
  return gcd_Stein(a/2,b)
  #b是偶數(shù)
  if b%2==0:
  return gcd_Stein(a,b/2)
  #都是奇數(shù)
  return gcd_Stein((a+b)/2,(a-b)/2)
  a=int(input("please input the first number:"))
  b=int(input("please input the second number:"))
  gcd=int(gcd_Stein(a,b))
  print(f"{a}和的最大公約數(shù)為{gcd}")


  以上就是小編給大家總結(jié)的關(guān)于python實(shí)現(xiàn)最大公約數(shù)的五種具體方法,希望可以給大家?guī)韼椭?/p>

文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請(qǐng)注明本文地址:http://www.ezyhdfw.cn/yun/127981.html

相關(guān)文章

  • 動(dòng)態(tài)規(guī)劃法(八)最大子數(shù)組問題(maximum subarray problem)

    摘要:動(dòng)態(tài)規(guī)劃法用表示最大子數(shù)組的結(jié)束下標(biāo)為的情形,則對(duì)于,有這樣就有了一個(gè)子結(jié)構(gòu),對(duì)于初始情形,遍歷就能得到這個(gè)數(shù)組,其最大者即可最大子數(shù)組的和。動(dòng)態(tài)規(guī)劃法想法巧妙,運(yùn)行效率也高,但是沒有普遍的適用性。 問題簡介 ??本文將介紹計(jì)算機(jī)算法中的經(jīng)典問題——最大子數(shù)組問題(maximum subarray problem)。所謂的最大子數(shù)組問題,指的是:給定一個(gè)數(shù)組A,尋找A的和最大的非空連續(xù)...

    jzman 評(píng)論0 收藏0
  • 《Java編程思想》讀后總結(jié)(一)

    摘要:前言編程思想這本書,陸陸續(xù)續(xù)讀了年,終于基本都瀏覽了一遍。每個(gè)對(duì)象對(duì)外暴露接口,程序通過對(duì)象暴露的接口向?qū)ο蟀l(fā)送消息,獲取該對(duì)象的服務(wù)能力。異常處理異常處理,為編寫程序階段提供了一種預(yù)見性的防止程序崩潰的出路。 前言 《Java編程思想》這本書,陸陸續(xù)續(xù)讀了1年,終于基本都瀏覽了一遍。通過這本書,試圖理解作者的想法,才真的體會(huì)到Java思想。感謝本書的作者,不僅講述了java的語法,更...

    hufeng 評(píng)論0 收藏0
  • 基于R和Python的極大似然估計(jì)的牛頓法實(shí)現(xiàn)

    摘要:本文以牛頓法為例給出求解分布分布的極大似然估計(jì)參數(shù)的理論并使用和實(shí)現(xiàn)。如果隨機(jī)變量獨(dú)立同分布于且已知一組樣本為了估計(jì)該分布的參數(shù),可以使用極大似然估計(jì)的方法。 目錄 0.前言 1.理論基礎(chǔ) 2.Cauchy分布的極大似然估計(jì) 2.1理論基礎(chǔ) 2.2算法 2.2.1R語言實(shí)現(xiàn) 2.2.2Py...

    QiuyueZhong 評(píng)論0 收藏0
  • Python 進(jìn)階之路 (九) 再立Flag, 社區(qū)最全的itertools深度解析(上)

    摘要:例如,以下對(duì)兩個(gè)的相應(yīng)元素求和這個(gè)例子很好的解釋了如何構(gòu)建中所謂的迭代器代數(shù)的函數(shù)的含義。為簡單起見,假設(shè)輸入的長度可被整除。接受兩個(gè)參數(shù)一個(gè)可迭代的正整數(shù)最終會(huì)在中個(gè)元素的所有組合的元組上產(chǎn)生一個(gè)迭代器。 前言 大家好,今天想和大家分享一下我的itertools學(xué)習(xí)體驗(yàn)及心得,itertools是一個(gè)Python的自帶庫,內(nèi)含多種非常實(shí)用的方法,我簡單學(xué)習(xí)了一下,發(fā)現(xiàn)可以大大提升工作...

    tuantuan 評(píng)論0 收藏0

發(fā)表評(píng)論

0條評(píng)論

最新活動(dòng)
閱讀需要支付1元查看
<